

Преобразователь измерительный многофункциональный

ИСТОК — TMp

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ AMCK.426485.395 P3

> МЕТОДИКА ПОВЕРКИ МРБ МП.2418-2014

По всем возникающим вопросам по применению, эксплуатации и техническому обслуживанию преобразователя измерительного многофункционального ИСТОК-ТМр, а также с замечаниями и предложениями обращайтесь по нижеприведенным контактным данным.

Научно-производственный центр «Спецсистема»

Республика Беларусь
210004, г. Витебск, ул. Ломоносова, 22

இ (тел/факс) (+375-212) 61-79-93; 36-04-04; 36-19-19; 36-28-28

Ј(моб. тел.) (+375-29) 624-29-16; 624-29-11; 819-29-12

Е-mail: info@spsys.net, sales@spsys.net

www.spsys.net

Изм. 4 март 2019

ПИМ ИСТОК-ТМр $VBx \ll 4I - 3R - 2F$ »

В связи с проводимой работой по совершенствованию конструкции и функциональных возможностей, возможны незначительные отличия в работе изделия от приведённого в настоящем руководстве описания работы, которые не влияют на его метрологические характеристики.

Актуальную версию руководства по эксплуатации ПИМ ИСТОК-ТМр смотрите в интернете по адресу www.spsys.net

Список используемых сокращений:

ДД –датчик давления;

ДП – датчик потока;

ДпД – датчик перепада давления;

ДТ – датчик температуры;

ИВх — измерительный вход

УИВх – удаленный измерительный вход

ЛС — ЛИНИЯ СВЯЗИ

НС – нештатная ситуация;

НСХ — номинальная статическая характеристика;

ПК – персональный компьютер;

ПО – программное обеспечение;

УП – управляющая программа расширителя

условное обозначение номеров ИВх расширителя ИСТОК-ТМр по видам входных сигналов:

«01» - «04», — силы тока,

«05» - «07», — омического сопротивления,

«08» и «09» — частотных (импульсных) соответственно.

(«10» и «11»)

Содержание

	Вводная часть	5
1	Описание и работа	7
	1.1 Технические характеристики	7
	1.2 Метрологические характеристики	10
	1.3 Устройство и работа	10
	1.4 Взаимодействие с другими изделиями	12
	1.5 Поверка	15
	1.6 Маркировка и пломбирование	15
	1.7 Упаковка	16
	1.8 Гарантийные обязательства	16
2	Использование по назначению	
	2.1 Указание мер безопасности	16
	2.2 Монтаж и подготовка к использованию	17
	2.3 Указания по эксплуатации	20
	2.4 Режим «Калибровка»	
3	Техническое обслуживание	23
4	Возможные неисправности и методы их устранения	24
5	Хранение и транспортирование	25
6	Утилизация	25
Пр	риложение А	
Αđ	бсолютная погрешность пересчета измеренных значений	
СО	противления в температуру	26
Пр	риложение Б	
Га	баритные и установочные размеры расширителя	27
Пр	риложение В	
Ог	писание контактов клеммных соединителей расширителя	28
Пр	риложение Г	
Ha	астройки программы «IstokOpcDa» для подключения расширителя	29
	Методика поверки МРБ МП.2418-2014	

Настоящее руководство по эксплуатации (РЭ) предназначено для квалифицированного персонала, выполняющего эксплуатацию, монтаж и обслуживание преобразователя измерительного многофункционального ИСТОК-ТМр (далее - расширитель ИСТОК-ТМр). РЭ содержит сведения по техническим характеристикам, устройству и работе расширителя ИСТОК-ТМр, необходимые для наиболее полного использования его возможностей, правильной эксплуатации и обслуживания.

Из-за соображений наглядности руководство не содержит полную детальную информацию по всем методам применения изделия и не может подразумевать все случаи установки, эксплуатации и технического обслуживания. Если Вам необходима дополнительная информация, а так же в случае возникновения специфических проблем, которые не нашли достаточно полного освещения в руководстве, просьба обращаться в подразделение разработки и сопровождения НПЦ "Спецсистема".

Кроме этого мы указываем на то, что содержание руководства не является частью предыдущих или существующих договоренностей, обязательств или правовых отношений и не может их изменить. Все обязательства НПЦ "Спецсистема" следуют из соответствующего договора купли/продажи, который содержит все действующие на данный момент гарантийные обязательства. Данные гарантийные обязательства не могут быть расширены или ограничены текстом данного руководств.

ПРЕДУПРЕЖДЕНИЕ!

Данный прибор может быть смонтирован и введен в эксплуатацию только после того, как квалифицированным персоналом было изучено данное руководство, проверено электропитание, измерительные и интерфейсные линии связи и дана гарантия того, что при нормальной эксплуатации или в случае неисправности составных частей измерительного комплекса в нем не возникнут опасные напряжения или аварийная ситуация.

Безупречная и надежная эксплуатация данного прибора подразумевает надлежащую транспортировку, правильное хранение, установку и монтаж, а так же соответствующее обслуживание и техническую эксплуатацию.

Требования к персоналу

К эксплуатации данного изделия допускается *квалифицированный персонал*, умеющий устанавливать, монтировать, вводить в эксплуатацию и эксплуатировать данное устройство, а так же обладающий соответствующей квалификацией касательно его работы, как то:

- Обученные или имеющие право эксплуатировать приборы/системы в соответствии со стандартами техники безопасности для электрических цепей и других технологических требований, связанных с особенностями измеряемых жидкостных и газовых сред;
- Обученные в соответствии со стандартами техники безопасности по уходу и использованию надлежащего предохранительного оснащения;
 - Обученные для оказания первой помощи.

Расширитель ИСТОК-ТМр предназначен для измерения входных электрических сигналов постоянного тока, омического сопротивления, частоты и импульсов от датчиков потока (ДП или расходомер), датчиков давления (ДД), датчиков перепада давления (ДпД), датчиков температуры (ДТ) и передачи результатов измерения по интерфейсному каналу RS-485 ведущему устройству, например вычислителю ИСТОК-ТМЗ или в ПК с установленным специализированным программным обеспечением для дальнейшей программно-математической обработки.

Расширитель ИСТОК-ТМр является средством измерения и применяется для увеличения каналов измерения (КИ) в составе измерительных комплексов (ИК) в узлах учета водяных и паровых систем теплоснабжения, в системах газоснабжения, водопользования, водообработки, очистки промышленных, сточных и канализационных вод.

Расширитель ИСТОК-ТМр является многоканальным многофункциональным устройством, управляемым внешним ведущим устройством по интерфейсному каналу RS-485. В качестве ведущего устройства может применяться вычислитель ИСТОК-ТМЗ или ПК с установленным специализированным ПО.

Пример записи при заказе или в документации другой продукции:

• Расширитель ИСТОК-ТМр (4i-3t-2h) ТУ РБ 300047573.003-2000, где,4i - количество измерительных входов (ИВх) силы постоянного тока. Базовое количество - 4;

3t - количество ИВх омического сопротивления. Базовое количество - 3;

2h - количество ИВх частотно-импульсных сигналов. Базовое количество - 2.

Примечание — Для расширителя ИСТОК—ТМр возможен выбор количества каждого вида ИВх, который определяется при заказе изделия. Общее количество ИВх - не более девяти.

Расширитель ИСТОК-ТМр зарегистрирован в Государственных реестрах средств измерений следующих государств:

Республика Беларусь: сертификат об утверждении типа средств измерений № *11015* от 29.03.2017 г., Госреестр № РБ 03 10 1214 17.

Системы измерительные ИСТОК. Сертификат об утверждении типа средств измерений № 10941 от 28.02.2017 г., Госреестр № РБ 03 10 2072 17.

Российская Федерация: свидетельство об утверждении типа средств измерений *BY.C.29.999.A* № 57768 от 06.02.2015 г., регистрационный номер 21548-15.

Республика Казахстан: сертификат о признании утверждения типа средств измерений № 14243 от 28.06.2017 г., Госреестр № КZ.02.03.07843-2017/РБ 03 10 1214 17.

Расширитель ИСТОК-ТМр соответствует требованиям ТР ТС 020/2011 «Электромагнитная совместимость технических средств». Номер декларации о соответствии: EAЭС №ВУ/112 11.01 ТР020 005 04255 от 07.03.2019.

В настоящем РЭ приняты следующие понятия и терминология:

«Измерительный вход» (ИВх) — измерительный тракт, состоящий из измерительной схемы первичного датчика (ДП, ДД, ДТ), линии связи (ЛС) и коммутируемой входной измерительной схемы расширителя ИСТОК-ТМр.

«Удаленный измерительный вход» (УИВх) — совокупность значений оцифрованных сигналов по **ИВх** передаваемых по интерфейсному каналу (COM RS-485 slave) расширителем ИСТОК-ТМр и программно-коммутируемых интерфейсных каналов ведущего (master) устройства, например вычислителя ИСТОК-ТМ3.

«Нештатная ситуация» (НС) — событие в алгоритме работы управляющей программы расширителя ИСТОК-ТМр, возникающее при обрыве линии связи с ДТ.

- 1 Описание и работа
- 1.1 Технические характеристики
- 1.1.1 Количество, функциональное исполнение и условные номера **ИВх** расширителя ИСТОК-ТМр (базовая конфигурация) по типу подключаемого входного электрического сигнала:
- **ИВх силы постоянного тока,** количество **4 (четыре)**, классификация номера от **«01»** до **«04»**.

Предназначены для измерения выходных сигналов силы постоянного тока датчиков (ДП, ДпД, ДД, ДТ), в диапазонах от 0 (4) мА до 20 мА. Входное сопротивление каждого ИВх - не более 60 Ом;

– **ИВх термосопротивления,** количество – **3 (три)**, классификация номера – от **«05»** до **«07»**.

Предназначены для измерения омического сопротивления ДТ (термопреобразователей - ГОСТ 6651-2009), подключенных по 4-х проводной схеме с НСХ типа:

- ✓ ТСП класса АА, А, В 50П, 100П α =0,00391 °C⁻¹ и Pt50, Pt100 α =0,00385 °C⁻¹;
 - ✓ ТСМ класса A, B 50M, 100M α =0,00428 °C⁻¹ и α =0,00426 °C⁻¹;

Примечание — Значение измеряемого омического сопротивления должно быть в диапазоне от 10 до 300 Ом. Значение тока, питающего ДТ - не более 2,0 мА;

– **ИВх частотно-импульсные,** количество – **2 (два)**, классификация номера для входных частотных сигналов – **«08»** и **«09»**, для импульсных - **«10»** и **«11»**.

Предназначены для измерения частотной последовательности сигналов прямоугольной формы или подсчета число-импульсной последовательности от ДП и т.п., формируемых пассивными токовыми ключами (источник тока встроен в расширитель) или имеющих активный выход по напряжению.

	Department Professive Vision of the Control of the
	Параметры входных частотных (число-импульсных) сигналов:
	 нормированный диапазон измерения частоты от 0,1 Гц до 3,0 кГц;
	– максимальная частота следования одиночных импульсов 30 Гц;
	- минимальная длительность одиночного импульса 40 мс;
	– напряжение встроенного источника тока 12±1,0 В;
	– токовый сигнал низкого уровня 12±2,0 мА;
	– токовый сигнал высокого уровня, не более 2,5 мА.
	1.1.2 Характеристики электропитания:
	- напряжение питания постоянного тока, В (24 ± 5);
	мощность потребления, не более, Вт
	1.1.3 Характеристики интерфейса RS-485 (с гальванической изоляцией):
	– протокол обмена данными ModBus RTU;
	 скорость передачи данных, бит/с от 4800 до 38400;
	 возможность подключения терминального резистора 120 Ом.
	1.1.4 Условия эксплуатации:
	– температура окружающей среды от 5 °C до 55 °C;
	– относительная влажность воздуха не более 80 % при 35 °C;
	- атмосферное давление от 84 до 106,7 кПа.
	1.1.5 Конструктивное исполнение расширителя ИСТОК-ТМр:
	– габаритные размеры L x B x H, мм, не более 195 x 175 x 95;
	степень защиты корпуса по ГОСТ 14254-2015 IP54;
	масса, не более, кг
	1.1.6 Расширитель ИСТОК-ТМр по электромагнитной совместимости
C	оответствует требованиям ГОСТ 30969-2002 для оборудования класса
U	ответетвует треоованиям тост оброз-2002 для оборудования міасса

- А и устойчив к следующим видам электромагнитных помех:

 наносекундным импульсным помехам с критерием качества функционирования «В»;
- микросекундным импульсным помехам большой энергии с критерием качества функционирования «В»;
- радиочастотным электромагнитным полям с критерием качества функционирования «А»;
- кондуктивным помехам, наведенными радиочастотными электромагнитными полями с критерием качества функционирования «А»;
- электростатическому разряду с критерием качества функционирования «В».
- 1.1.7 По уровню электромагнитных излучений расширитель ИСТОК-ТМр соответствует требованиям ГОСТ 30969-2002 для оборудования класса A.

- 1.1.8 Расширитель ИСТОК-ТМр по требованиям безопасности соответствует ГОСТ IEC 61010-1-2014 для оборудования категории перенапряжения II и степени загрязнения 2. Электропитание расширителя выполняется от напряжения постоянного тока величиной (24 ± 5) B.
- 1.1.9 Комплектность поставки расширителя ИСТОК-ТМр и сведения о содержании драгметаллов приведены в его паспорте.
 - 1.1.10 Показатели надежности расширителя ИСТОК-ТМр:
- 1.1.11 По устойчивости к механическим воздействиям при эксплуатации расширитель ИСТОК-ТМр соответствует группе L3 по ГОСТ 12997-84 (амплитуда вибрации не более 0,1 мм в диапазоне частот 5 25 Гц).
- 1.1.12 Расширитель ИСТОК-ТМ_Р обеспечивает световую сигнализацию:
 - «Сеть» наличие питающего напряжения. Цвет свечения зеленый;
- «**Нештатная ситуация**» обрыв линии связи с ДТ. Режим и цвет свечения мигающий красный:
 - «RS-485» наличие обмена данными по интерфейсу RS-485.
- 1.1.13 Управляющая программа (УП) расширителя ИСТОК-ТМр обеспечивает:
- прием и передачу данных по последовательному, *гальванически изолированному* интерфейсу RS-485 в полудуплексном (Half-Duplex) режиме. Протокол передачи данных ModBus RTU;
- измерение входных электрических сигналов от первичных датчиков ДП, ДпД, ДД, ДТ и т.д.;
- передачу, по запросу, оцифрованных результатов измерения выходных сигналов первичных датчиков по интерфейсному каналу RS-485 вычислителю ИСТОК-ТМ3 или в ПК для дальнейшей программноматематической обработки;
- автоматическое возобновление работы при восстановлении электропитания расширителя ИСТОК-ТМр;

1.2 Метрологические характеристики

- 1.2.1 Основные метрологические характеристики расширителя ИСТОК-ТМр по измеряемым и вычисляемым параметрам:
- максимально допускаемая основная приведенная погрешность измерения входных сигналов по $\it {\it MBx}$ силы тока в диапазоне от 0 (4) до 20 мA (в процентах к нормирующему значению 20 мA),%, не более \pm 0,05 ;
- максимально допускаемая основная приведенная погрешность **ИВх** измерения омического сопротивления в диапазоне от 10 до 300 Ом (в процентах к нормирующему значению 290 Ом), %, не более ... \pm 0,05;

Примечание — Абсолютная погрешность при пересчете измеренных значений омического сопротивления в температуру приведена в Приложении А.

- максимально допускаемая основная относительная погрешность измерения входных частотных сигналов по частотно-импульсным ИВx в диапазоне от 0,1 до 3000 Гц, %, не более \pm 0,05 ;
- максимально допускаемая основная относительная погрешность измерения по частотно-импульсным $\it {\it MBx}$ входных число-импульсных сигналов, с частотой следования до 30 Гц, %, не более \pm 0,04 .

1.3 Устройство и работа

1.3.1 Внешний вид расширителя ИСТОК-ТМр приведен на рисунке 1.1. Вид коммутационного отсека расширителя ИСТОК-ТМр приведен на рисунке 1.2.

Рисунок 1.1 - Внешний вид расширителя ИСТОК-ТМр

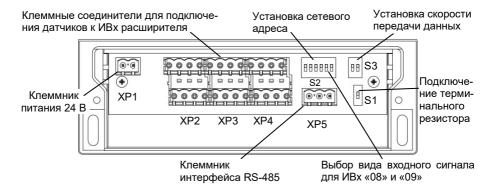


Рисунок 1.2 - Коммутационный отсек расширителя ИСТОК-ТМр

1.3.2 Конструктивно расширитель ИСТОК-ТМр выполнен в пластмассовом корпусе, разделенном на два, закрывающихся индивидуальными крышками отсека - отсек управления и коммутационный отсек. Каждая крышка имеет специальное уплотнение и фиксируется в закрытом положении винтами. Габаритные размеры и варианты крепления расширителя ИСТОК-ТМр приведены в приложении Б.

На крышке отсека управления нанесена маркировка изделия и расположены элементы световой сигнализации «RS-485», «Сеть» и «Нештатная ситуация». При снятой крышке коммутационного отсека обеспечивается доступ к входным разъемным клеммникам состоящим из двух частей - одна из которых устанавливается на плату, а другая монтируется на кабель. Измерительные и интерфейсные линии связи подключаются «под винт» к кабельной части клеммника. Переключающими рычажками 1-4 переключателя «S2» задается сетевой адрес расширителя ИСТОКТМр при его подключении к интерфейсной линии RS-485, а переключающие рычажки 5 и 6 служат для установки типа входного сигнала для частотно- импульсных *ИВх* - частотный или импульсный. Переключателем «S3» задается скорость передачи данных расширителем. Переключателем «S1» подключается резистор 120 Ом между контактами 1 и 2 клеммника XP5 интерфейса RS-485.

- 1.3.3 Подключение к расширителю ИСТОК-ТМр сигнальных кабелей от датчиков производится через устанавливаемые потребителем в нижней торцевой стороне корпуса кабельные вводы (гермовводы), входящие в комплект поставки.
- 1.3.4 Описание контактов клеммных соединителей расширителя ИСТОК-ТМр приведено в приложении В.

- 1.4 Взаимодействие с другими изделиями
- 1.4.1 *ИВх* расширителя ИСТОК-ТМр обеспечивают измерение входных сигналов термосопротивления, силы постоянного тока и частотно-импульсных сигналов.

ВНИМАНИЕ! Подключение датчиков к **ИВх** расширителя ИСТОК-ТМр должно выполняться экранированными кабелями или экранированными витыми парами.

1.4.2 Подключение к **ИВх «01» - «04»** датчиков с токовым выходным сигналом выполняется по двухпроводной схеме, с соблюдением полярности подключения. Пример подключения такого типа датчика приведен на рисунке 1.3.

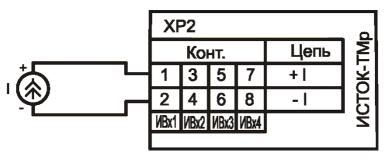


Рисунок 1.3 –Пример подключения датчика с токовым выходным сигналом

1.4.3 Подключение к **ИВх «05» - «07»** ДТ выполняется по четырехпроводной схеме (см. рисунок 1.4). Питание ДТ производится внутренним коммутируемым источником постоянного тока расширителя (Imax не более 2,0 мА).

	Х	P3	XP4		
	Ko	HT.	Конт.	Цепь	윤
	1	5	1	Вход "+VR"	Ę
дт Й —	2		2	Источник тока "+IR"	ŏ
~'↓	3	7	3	Источник тока "-IR"	ИСТОК-ТМр
	4	8	4	Вход "-VR"	
	ИВх5	ИВх6	ИВх7		'
				•	

Рисунок 1.4 – Пример подключения ДТ

- 1.4.4 Подключение к *ИВх* «08» и «09» (для импульсного сигнала *ИВх* «10» и «11») датчиков, имеющих в выходных цепях двухпозиционные пассивные токовые ключи, производится в соответствии с рисунком 1.5. Питание токовых ключей обеспечивается внутренним источником тока расширителя. Сигнал, модулируемый датчиком, должен соответствовать следующим параметрам:
 - токовый сигнал низкого уровня (12 \pm 2) мА;
 - токовый сигнал высокого уровня не более 2,5 мА;
 - напряжение на разомкнутом ключе датчика составляет (12 \pm 1) В.

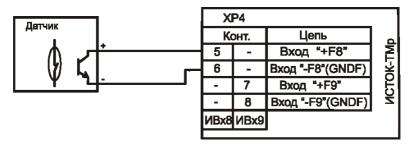
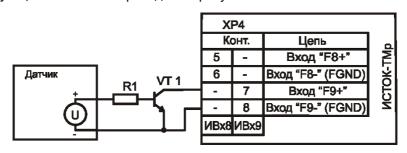



Рисунок 1.5 – Пример подключения датчика с пассивным выходом

1.4.5 Подключение к *ИВх* «08» и «09» датчиков с активным выходным частотным сигналом. Пример схемы подключения с *использованием со- еласующих элементов* приведен на рисунке 1.6.

Резистор R1 – 0,25Вт 1 кОм 10%; транзистор VT1 –КТ315А

Рисунок 1.6 – Пример подключения датчика с активным выходом

1.4.6 Расширитель ИСТОК-ТМр обеспечивает работоспособность при подключении источника постоянного тока напряжением (24 ± 5) В без соблюдения требований полярности. Пример схемы подключения питающего напряжения к клеммному соединителю XP1 расширителя приведен на рисунке 1.7. В условиях сложной электромагнитной обстановки необходимо применять экранированный кабель.

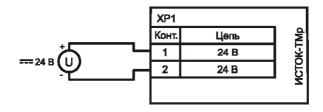


Рисунок 1.7 – Пример подключения расширителя к питающей сети постоянного тока

- 1.4.7 Расширитель ИСТОК-ТМр обеспечивает прием и передачу данных по гальванически развязанному интерфейсному каналу RS-485 в полудуплексном (Half-Duplex) режиме.
- 1.4.8 Для создания удаленных **ИВх** расширитель ИСТОК-ТМр может подключаться по интерфейсной линии RS-485 к вычислителю ИСТОК-ТМ3, работающему в режиме ведущий Master или, через преобразователь «RS485–USB» или «RS485–RS232», непосредственно к ПК с установленным специализированным ПО.

Примечание — В качестве преобразователя «RS-485 — USB» может использоваться конвертер ИСТОК «RS485-USB» АМСК.468353.302 или аналогичный, другого производителя.

1.4.9 Примеры подключения расширителя ИСТОК-ТМр приведены на рисунках 1.8 и 1.9.

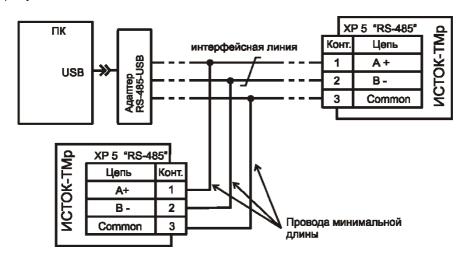


Рисунок 1.8 – Пример подключения расширителя ИСТОК-ТМр

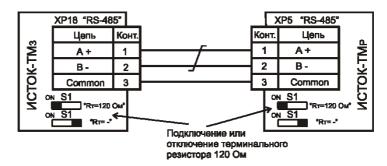


Рисунок 1.9 – Пример подключения расширителя ИСТОК-ТМр

1.5 Поверка

- 1.5.1 Поверка расширителя ИСТОК-ТМр производится в соответствии с требованиями документа «Преобразователи измерительные многофункциональные ИСТОК-ТМ3 и ИСТОК-ТМр. Методика поверки МРБ МП. 2814-2014».
- 1.5.2 При положительных результатах поверки производится запись в паспорт расширителя ИСТОК-ТМр о его пригодности, которая утверждается клеймом и подписью поверителя.
 - 1.5.3 Межповерочный интервал (периодичность поверки) 4 года.

1.6 Маркировка и пломбирование

- 1.6.1 Маркировка расширителя ИСТОК-ТМр содержит следующую информацию:
 - 1) на лицевой стороне корпуса расширителя:
 - -наименование и условное обозначение;
 - –обозначение ТУ;
 - -товарный знак изготовителя;
 - -знак Государственного Реестра;
 - единый знак обращения продукции на рынке государств-членов Таможенного союза;
 - -номинальное значение напряжения питания постоянного тока;
 - -номинальная мощность потребления;
 - 2) на этикетке с боковой или тыльной стороны корпуса расширителя:
 - сокращенное наименование и адрес изготовителя;
 - заводской порядковый номер и дата выпуска.

- 1.6.2 Расширитель ИСТОК-ТМр подлежит опломбированию клеймом ОТК завода-изготовителя и клеймом поверителя.
- В расширителе ИСТОК-ТМр пломбируется крышка отсека платы управления. Для ограничения доступа, после ввода в эксплуатацию, предусмотрена возможность опломбирования крышки коммутационного отсека.

1.7 Упаковка

- 1.7.1 Расширитель ИСТОК-ТМр, помещают в полиэтиленовый пакет и упаковывают в картонную коробку совместно с комплектом эксплуатационной документации и комплектом ЗИП.
- 1.7.2 Габаритные размеры (L x B x H) расширителя ИСТОК-ТМр в упаковке, не более 215 x 197 x 120 мм. Масса расширителя, брутто не более 1,0 кг.

1.8 Гарантийные обязательства

- 1.8.1 При соблюдении потребителем правил монтажа, эксплуатации, транспортирования и хранения согласно настоящего РЭ, гарантийный срок эксплуатации расширителя ИСТОК-ТМр составляет 24 месяца с даты ввода в эксплуатацию.
- 1.8.2 Наиболее полно требования по соблюдению гарантийных обязательств изложены в паспорте расширителя ИСТОК-ТМр.

2 Использование по назначению

2.1 Указание мер безопасности

- ✓ К монтажу, эксплуатации и техническому обслуживанию расширителя ИСТОК-ТМр допускаются лица, достигшие 18 лет, имеющие группу по электробезопасности не ниже II, изучившие настоящее РЭ, прошедшие специальную подготовку по безопасным приемам работы и инструктаж по технике безопасности на рабочем месте;
- ✓ Расширитель ИСТОК-ТМр запитывается от сети постоянного тока напряжением (24 ± 5) В. В качестве защиты входной цепи питания расширителя от перегрузки по току применяется плавкий предохранитель типа ВП4-0,5 А;
- ✓ Расширитель ИСТОК-ТМр должен размещаться вне взрывоопасных зон, связь с датчиками должна обеспечиваться при помощи сертифицированных барьеров искрозащиты.

- ✓ При монтаже и эксплуатации расширителя ИСТОК-ТМр необходимо соблюдать требования ТКП 181-2009 «Правила технической эксплуатации электроустановок потребителей»;
- ✓ Источником потенциальной опасности для персонала может являться теплоноситель, находящийся под большим давлением и высокой температурой;
- ✓ Подключение линий электропитания и линий связи к расширителю ИСТОК-ТМр проводить строго в соответствии с маркировкой и *при отключенном напряжении питания всех устройств*;
- ✓ После транспортирования или хранения в условиях отличных от нормальных, расширитель ИСТОК-ТМр перед включением должен быть выдержан в упаковке в нормальных климатических условиях не менее 4 ч и после распаковывания не менее 2 ч.

2.2 Монтаж и подготовка к использованию

- 2.2.1 Монтаж и установка расширителя ИСТОК-ТМр должны производиться *квалифицированным* персоналом в соответствии с указаниями настоящего РЭ.
- 2.2.2 После вскрытия упаковки необходимо провести внешний осмотр изделия и проверить комплектность поставки на соответствие разделу 2 паспорта.
- 2.2.3 На месте эксплуатации прибора не допускается наличие в воздухе паров кислот, щелочей, сернистых и других агрессивных газов, вызывающих коррозию. Расширитель нельзя устанавливать в местах, подверженных вибрации частотой более 25 Гц, амплитудой более 0,1 мм и вблизи источников мощных электромагнитных полей.

ВНИМАНИЕ! Расширитель ИСТОК-ТМр должны эксплуатироваться внутри помещений в соответствии с климатическими условиями согласно 1.1.4.

- 2.2.4 Для удобства обслуживания расширитель ИСТОК-ТМр монтируется на высоте от 1200 до 1800 мм над уровнем пола. При этом необходимо обеспечить удобный доступ к монтажной части прибора и кабельным вводам. Подключение электрических цепей к клеммным соединителям расширителя рекомендуется производить через блок наборных зажимов, установленных на DIN-рейке.
- 2.2.5 Монтаж электрических сигнальных цепей между расширителем и датчиками, а также подключение цепей электропитания производить в соответствии с требованиями технической документацией на датчики и проекта на узел учета.

При организации учета в условиях повышенной опасности расширитель ИСТОК-ТМр должен располагаться во <u>взрывобезопасной зоне</u>, а подключение первичных датчиков к прибору должно выполняться с использованием пассивных барьеров искрозащиты с напряжением ограничения от 13 до 24 В.

- 2.2.6 Для обеспечения степени защиты корпуса расширителя классу IP54 диаметр применяемой кабельной продукции должен соответствовать диаметру кабельного ввода.
- 2.2.7 Для обеспечения минимального уровня помех и защиты от наводок при монтаже линий связи, цепей электропитания необходимо выполнять следующие требования:
- линии связи необходимо размещать как можно дальше от силовых кабелей или другого сильноточного оборудования, или в отдельных стальных заземленных трубах;
- расстояние линий связи до силовых цепей 230 В должно быть не менее 500 мм. Не допускается прокладка в одной трубе силовых и измерительных цепей без принятия специальных мер защиты;
- экранирующие оболочки сигнальных линий датчиков необходимо соединять вместе только в одной точке со стороны расширителя. Эту точку следует заземлить. Вариант подключения экранирующих оболочек кабелей выбирается экспериментально и зависит от условий применения расширителя. Со стороны подключения датчиков экранирующие оболочки сигнальных линий следует отключить, как от шин заземления (зануления), так и от корпусов датчиков;
- корпуса датчиков, источников питания и других составных частей узла учета, питание которых осуществляется от сети переменного тока напряжением 230 В, должны быть соединены с точкой заземления экранов проводником сечением не менее 1,5 мм²;
- для частотно- импульсных *ИВх* суммарное активное сопротивление *пары проводников* сигнальной цепи от датчика не должно превышать значения 800 Ом:
- подключение ДТ к к *ИВх* «05» «07» необходимо выполнять цельным 4-х проводным кабелем, исключив возможность образования ЭДС в контактных соединениях.
- 2.2.8 Параметры к линии связи для обмена данными по интерфейсу RS-485 должны соответствовать следующим требованиям:
- для линии связи интерфейса RS-485 использовать *качественную* витую пару с волновым сопротивлением *120 Ом*. Ответвления к устройствам от интерфейсного кабеля должны иметь минимальную длину;
 - длина линии связи интерфейса RS-485 не должна превышать 1200 м.
- 2.2.9 Подключение сигнальных измерительных цепей от датчиков к входным клеммым соединителям расширителя ИСТОК-ТМр должно производится проводниками с медными жилами минимального сечения 0,3 мм², согласно требованиям инструкций по монтажу соответствующих датчиков. Конструкция клеммных соединителей расширителя допускает использование монтажного провода сечением не более 2,5 мм².

В качестве кабеля питания рекомендуется использовать экранированный двухжильный круглый кабель с медными жилами сечением не менее 0,5 мм².

- 2.2.10 Первое включение расширителя ИСТОК-ТМр:
- после установки на месте эксплуатации необходимо проверить соответствие выполненных соединений проектной документации;
- установить в расширителе переключателем S2.1-S2.4 сетевой адрес прибора, S2.5 и S2.6 вид входного сигнала частотно-импульсных **ИВх** частотный или импульсный, переключателем S3 скорость передачи данных;
- подключить расширитель к цепи питания постоянного тока напряжением 24 В;
 - проверить свечение индикатора «Сеть»;
 - убедиться в надлежащем функционировании расширителя.
- 2.2.11 По завершении пуско-наладочных работ должен быть составлен акт ввода расширителя ИСТОК-ТМр в эксплуатацию.

ВНИМАНИЕ!

- 1. Подключение датчиков к входным клеммным соединителям расширителя, замена и устранение дефектов в линиях связи допускается только при отключенном напряжении питания всех приборов.
- 2. Для исключения попадания пыли и влаги внутрь корпуса прибора, после подключения измерительных цепей и линий связи к клеммным соединителям расширителя, необходимо закрутить гайки кабельных вводов до обеспечения плотного обжима кабеля. Диаметр используемого кабеля должен соответствовать размеру (диаметру) кабельного ввода.
- 3. В рабочем состоянии все крышки расширителя должны быть закрыты, а в неиспользуемые гермовводы должны быть установлены заглушки.
- 4. Запрещается подключать к расширителю неисправные датчики, а также приборы с выходным сигналом, не соответствующим требованиям нормативной документации.
- 5. При проверке целостности измерительных цепей и линий связи не допускается использование электрических напряжений, превышающих требования данного руководства и нормативной документацией на устройства связи.
- 6. При проведении сварочных работ на трубопроводах, на которых установлены датчики, последние необходимо обесточить и отключить от расширителя.
- 7. При обслуживании и эксплуатации расширителя должны быть приняты меры по защите прибора и линий связи от статического электричества.

2.3 Указания по эксплуатации

- 2.3.1 После проверки монтажа измерительных цепей и правильности подключения к интерфейсной линии RS-485, до включения питающего напряжения 24 В постоянного тока, необходимо выполнить настройку расширителя ИСТОК-ТМр следующим образом:
- 1) Выполнить, с применением кабеля типа «витая пара» или в случае сложной помеховой обстановки экранированной витой пары, подключение к расширителю первичных датчиков. Назначение контактов клеммных колодок по виду входного сигнала приведено на рисунке 2.1. Подключение выполняется согласно описанию, изложенному в пунктах 1.4.1 1.4.5.

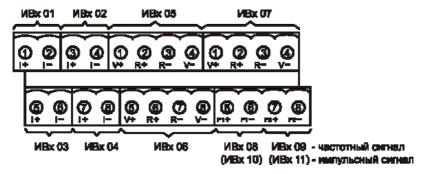


Рисунок 2.1 - Назначение контактов клеммных колодок

ВНИМАНИЕ! Если к расширителю ИСТОК-ТМр будут одновременно подключены датчики с частотным и число-импульсным выходным сигналом, необходимо <u>чтобы датчик с частотным выходным сигналом был подключен к ИВх «08», датчик с число-импульсным выходным сигналом — к ИВх «11».</u>

2) В зависимости от вида входного сигнала, установить на переключателе «S2» рычажком 5 режим работы *ИВх «08» («10»)*, рычажком 6 режим работы *ИВх «09» («11»)*.

Примечание – Далее на рисунках переключающие рычажки обозначены темным цветом.

При установке в положение «ON» () *ИВх* работает в режиме подсчета количества импульсов, а при установке в нижнее положение () - измерении частоты входного сигнала прямоугольной формы;

3) Задать индивидуальный сетевой адрес расширителя, отличающийся от остальных устройств, подключенных к интерфейсной линии. В расширителе ИСТОК-ТМр адрес задается установкой переключающих рычажков 1-4 переключателя «S2». Десятичное значение адреса, в зависимости от установки переключающих рычажков 1-4 переключателя «S2», приведено в таблице 1.1;

Таблица 1.1

Положение переключателей S2	Значение адреса	Положение переключателей S2	Значение адреса
$ \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix} $	01	$ \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 4 \end{bmatrix} \begin{bmatrix} 0 \\ 6 \end{bmatrix} $	09
$ \begin{bmatrix} \circ N \\ \bullet \\ 1 \end{bmatrix} \begin{bmatrix} \bullet \\ 2 \end{bmatrix} \begin{bmatrix} \bullet \\ 4 \end{bmatrix} \begin{bmatrix} \bullet \\ 5 \end{bmatrix} \begin{bmatrix} \bullet \\ 6 \end{bmatrix} $	02	$ \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix} $	10
	03		11
	04	$\bigcap_{1}^{ON}\bigcap_{2}\bigcap_{3}\bigcap_{4}\bigcap_{5}\bigcap_{6}$	12
	05	$ \begin{bmatrix} ON & Q & Q & Q & Q & Q \\ 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix} $	13
	06	$ \begin{bmatrix} ON & & & & & & & & \\ ON & & & & & & & & & \\ 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix} $	14
	07	ON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15
	08	ON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>Установка не</u> рекомендуется!

4) Выбрать скорость передачи данных. Значение скорости задается переключателем «S3» в соответствии с таблицей 1.2.

Таблица 1.2

Положение переключателей S3	ON D	ON D	ON Q	ON D
Скорость передачи данных, бит/с	4800	9600	19200	38400

Примечание – Установленная в расширителе скорость передачи данных должна соответствовать скорости, установленной на ведущем устройстве на интерфейсной линии RS-485.

ВНИМАНИЕ! Установка или изменение в расширителе ИСТОК-ТМр вышеуказанных параметров - сетевого адреса и скорости передачи данных вступает в силу только после отключения и повторного включения питания расширителя;

5) В расширителе предусмотрено, при необходимости, подключение к интерфейсной линии терминального резистора 120 Ом. Подключение терминального резистора к контактами 1 и 2 клеммного соединителя XP5 производится установкой переключателя «S1» в положение «ON» « »».

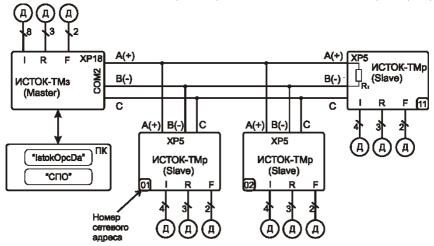
2.3.2 Подают на расширитель ИСТОК-ТМр напряжение питания 24 В постоянного тока.

При успешном прохождении самодиагностики управляющей программой включается индикатор «Сеть» и расширитель переходит в режим подчиненного (Slave) устройства и ожидает команды от ведущего (Master) устройства на интерфейсной линии.

- В качестве ведущего устройства может выступать вычислитель ИСТОК-ТМ3 или ПК с установленным специализированным ПО.
- 2.3.3 Для приема вычислителем ИСТОК-ТМз по интерфейсному каналу связи оцифрованных значений измеряемых сигналов от расширителя ИСТОК-ТМр (создание *удаленного ИВх*), необходимо указать при конфигурировании вычислителя ИСТОК-ТМз:
- 1) Номер и тип *ИВх* расширителя ИСТОК-ТМр: «01»-«04» для датчиков с токовым выходным сигналом, «05»-«07» для ДТ, «08»- «09» для датчиков с частотным выходом и «10»- «11» с импульсным выходом;
- 2) Номер сетевого адреса, установленный в расширителе (в десятичном виде) переключателем «S2»;
- 3) Номер СОМ-порта вычислителя, по которому принимаются оцифрованные значения измеряемых сигналов от расширителя ИСТОК-ТМр;
- 4) Скорость обмена данными, совпадающей со скоростью, установленной в расширителе переключателем «S3»;
 - 5) Тип протокола обмена ModBus Master.

Остальные настройки при конфигурации вычислителя ИСТОК-ТМ3 вводятся согласно его руководства по эксплуатации.

- 2.3.4 Для активации установленных настроек вычислителем ИСТОК-ТМз необходимо выключить его питание и через 8-10 с включить его.
- 2.3.5 Для организации считывания с расширителя ИСТОК-ТМр результатов измерений специализированным ПО (СПО) необходимо, чтобы на ПК была установлена и активирована программа «IstokOpcDa». В ней должны быть выполнены настройки согласно приложению Г.
- 2.3.6 Настойка СПО производится в соответствии с его эксплуатационной документацией.
- 2.3.7 Работа расширителей, объединенных в сеть удаленного сбора и передача ведущему устройству результатов измерения сигналов от подключенных датчиков, контролирующих параметры среды, производится в соответствии с протоколом Modbus RTU.


Пример построения системы удаленного сбора и передачи данных показан на рисунке 2.2.

Примечание — Количество и тип датчиков, подключаемых к расширителю ИСТОК-ТМр, определяется проектом измерительной системы и с учетом конфигурации (стандартная или заказная) измерительных входов.

2.4 Режим «Калибровка»

- 2.4.1 Режим «Калибровка» предназначен для установки уточняющих настроечных данных для организации работы расширителя ИСТОК-ТМр при выпуске из производства или ремонта. Процесс калибровки состоит из нескольких этапов и предназначен для использования только технически подготовленным персоналом!
- 2.4.2 Инициализация режима «Калибровка» выполняется кнопкой SA1 при включении питающего напряжения расширителя.
- 2.4.3 Для защиты от несанкционированного вмешательства доступ к кнопке SA1 «Калибровка» ограничен крышкой отсека управления, которая пломбируется ОТК изготовителя и поверителем.

Примечание — Описание работы в режиме «Калибровка» предоставляется изготовителем расширителя по обоснованному запросу.

Д - Датчик с выходным сигналом в виде тока (I), сопротивления (R), частоты или импульсов (F)

Рисунок 2.2 – Пример построения системы удаленного сбора и передачи данных

- 3 Техническое обслуживание
- 3.1 Техническое обслуживание расширителя ИСТОК-ТМр производится с целью поддержания изделия в рабочем состоянии и соответствия его технических характеристик требованиям нормативных документов.

Примечание — Техническое обслуживание подключенных к расширителю датчиков производится в соответствии с их эксплуатационной документацией.

3.2 Ежедневно в процессе эксплуатации расширителя должен производиться контроль его работоспособности по наличию свечения элементов световой индикации «Сеть» и «RS-485».

- 3.3 Плановый осмотр производится один раз в месяц. В процессе осмотра выполняют следующие операции:
- проверяют отсутствие механических повреждений корпуса расширителя, наличие и целостность пломб;
- проверяют отсутствие повреждения изоляции сигнальных и интерфейсных кабелей, плотную затяжку гаек гермовводов;
 - проверяют прочность крепления расширителя к опорной поверхности.
 - 4 Возможные неисправности и методы их устранения
- 4.1 Возможные неисправности расширителя ИСТОК-ТМр и методы их устранения приведены в таблице 4.1.

Таблица 4.1 - Возможные неисправности и методы их устранения

SWOMIBIC HEVELIP	авности и методы их устранения			
Вероятная причина	Способ устранения			
Отсутствует напряжение питания 24 В	Проверить исправность питающего устройства и цепи питания			
Неверно задан адрес устрой- ства	Адрес не должен совпадать с адресами других устройств на линии			
	Значение скорости должно соответствовать скорости, установленной в ПК или принятой для данной линии связи			
Неправильное подключение к интерфейсной линии RS-485	Проверить правильность подключения к интерфейсной линии			
Вышел из строя приемник или передатчик по- следовательного интерфейса				
Неисправность в интерфейсной линии	Устранить неисправность			
Неисправность датчика	Заменить неисправный датчик			
Обрыв линии связи датчика с расширителем	Устранить обрыв линии связи			
	Вероятная причина Отсутствует напряжение питания 24 В Неверно задан адрес устройства Неверно задана скорость обмена данными Неправильное подключение к интерфейсной линии RS-485 Вышел из строя приемник или передатчик последовательного интерфейса Неисправность в интерфейсной линии Неисправность датчика Обрыв линии связи датчика с			

4.2 Если неисправность не удается устранить вышеперечисленными способами, необходимо обратиться на предприятие-изготовитель или в ближайший центр технической поддержки.

- 4.3 Характеристики плавких предохранителей
- 4.3.1 В качестве защиты от перегрузки по току во входной цепи питания расширителя применяется плавкий предохранитель типа ВП4-0,5 А.

5 Хранение и транспортирование

- 5.1 Транспортирование расширителя ИСТОК-ТМр должно проводиться в упаковке завода-изготовителя всеми видами крытых транспортных средств, кроме неотапливаемых негерметизированных отсеков самолетов, в соответствии с правилами перевозки грузов, действующих на данном виде транспорта.
- 5.2 Условия транспортирования должны соответствовать требованиям ГОСТ 15150-69 для условий хранения группы 3 (температура транспортирования от минус 50 °C до 50 °C, относительная влажность воздуха не более 95 % при 25 °C).
- 5.3 Размещение и крепление ящиков с изделиями должно обеспечивать их устойчивое положение, исключающее возможность смещения ящиков и ударов их между собой и о стенки транспортных средств.
- 5.4 Условия хранения расширителя ИСТОК-ТМр в упаковке заводаизготовителя должны соответствовать группе 1 по ГОСТ 15150-69 (отапливаемое, вентилируемое помещение с температурой воздуха от 5 °C до 40 °C и относительной влажности воздуха не более 80 % при 25 °C).
- 5.5 В местах хранения расширителя ИСТОК-ТМр в окружающем воздухе должны отсутствовать кислотные, щелочные и другие агрессивные примеси и токопроводящая пыль.
- 5.6 Максимальный срок хранения расширителя ИСТОК-ТМр без переконсервации в упаковке завода-изготовителя в условиях хранения, соответствующих группе 1 по ГОСТ 15150-69 не более трех лет.

6 Утилизация

- 6.1 Расширитель ИСТОК-ТМр при эксплуатации, хранении и транспортировании не выделяет загрязняющие и ядовитые вещества приносящие вред здоровью человека и окружающей среде и относится к продукции не опасной в экологическом отношении.
- 6.2 По окончании службы расширителя ИСТОК-ТМр эксплуатирующая организация осуществляет мероприятия по подготовке и отправке прибора на утилизацию в соответствии с действующим законодательством.
- 6.3 Утилизация расширителя ИСТОК-ТМр осуществляется сортировкой и сдачей на переработку раздельно по группам материалов.

Приложение A (справочное)

Абсолютная погрешность пересчета измеренных значений сопротивления в температуру

Для расчета влияния погрешности измерения ΔR расширителя ИСТОК-ТМР на погрешность расчета по температуре Δt , ${}^{\circ}C$, используется формула

$$\Delta t = \frac{dt}{dRt} \times \Delta R$$

где $\frac{dt}{dRt}$ - производная уравнений вычисления температуры согласно приложению Б ГОСТ 6651;

 ΔR = 0,15 Om $\,-\,$ абсолютная погрешность измерения сопротивления расширителем ИСТОК-ТМР.

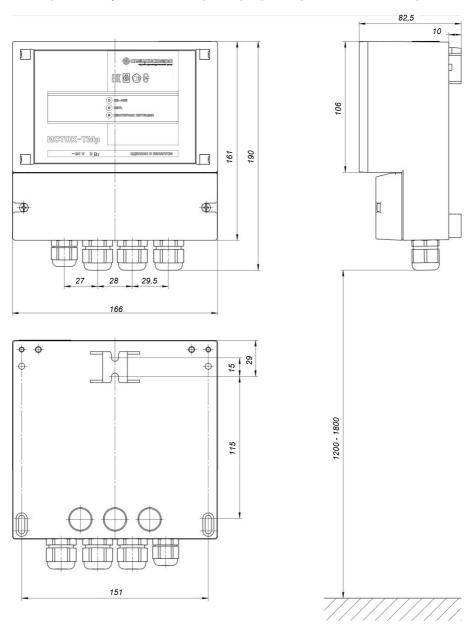

Абсолютная погрешность расширителя ИСТОК-ТМР при пересчете измеренных значений сопротивления в температуру приведена в таблице А.1

Таблица А.1

Тип датчика по ГОСТ 6651	Диапазон измеряемых темпе- ратур tмин – tмах, °C	Диапазон сопротивлений Rмин - Rмах, Ом	Диапазон значений абсолютной погрешности Δt, °C	Максимальное значение абсолютной погрешности Δt, °C
Pt 100 α=0.00385	От минус 200 до 550	18,52 - 297,49	0,35 – 0,46	0,46
100 Π α=0.00391	От минус 200 до 548	17,24 – 299,96	0,34 – 0,45	0,45
Pt 50 α=0.00385	От минус 190 до 850	11,42 – 195,24	0,7 – 1,0	1,0
50 Π α=0.00391	От минус 190 до 850	10,81 – 197,58	0,69 – 1,0	1,0
100 M α=0.00428	От минус 180 до 200	20,53 – 185,60	0,33 – 0,35	0,35
100 M α=0.00426	От минус 50 до 200	78,7 – 185,2	0,35	0,35
50 M α=0.00428	От минус 180 до 200	10,27 – 92,8	0,66 – 0,35	0,66
50 M α=0,00426	От минус 50 до 200	39,35 – 92,6	0,35	0,35

Приложение Б (справочное)

Габаритные и установочные размеры расширителя ИСТОК-ТМр, мм

Приложение В

(справочное)

Описание контактов клеммных соединителей расширителя ИСТОК-ТМр

Таблица В.1 – Описание контактов и соответствие номеров клеммных


соединителей номерам ИВх расширителя ИСТОК-ТМр Соединитель Номер Номер на ппате Марки-ИВх Цепь контакта Поз. ровка Вил расширителя соединителя номер ИВх постоянного тока Вход «I+» 01 11 2 Вход «I-» 3 Вход «I+» 02 12 4 Вход «I-» XP2 5 Вход «I+» 03 13 6 Вход «I-» Вход «I+» 04 14 8 Вход «I-» ИВх сопротивления 1 Вход «+VR» 2 Источник тока «+IR» 05 R1 3 Источник тока «-IR» 4 Вход «-VR» XP3 5 Вход «+VR» 6 Источник тока «+IR» 06 R2 7 Источник тока «-IR» 8 Вход «-VR» 1 Вход «+VR» 2 Источник тока «+IR» XP4 07 R3 3 Источник тока «-IR» Вход «-VR» Частотно-импульсные ИВх 5 Вход «+F8» 08 частотный вход F1 10 - импульсный 6 Вход «-F8» (GNDF) XP4 7 Вход «+F9» 09 частотный вход F2 11 - импульсный 8 Вход «-F9» (GNDF) Соединители питания и интерфейса Вход «24 В» Питание XP1 расширителя 2 Вход «24 В» 1 A(+)Интерфейс XP5 2 B (-) RS-485 3 C (Common)

Приложение Г

(справочное)

Настройки программы «IstokOpcDa» для подключения расширителя ИСТОК-ТМр

- Г.1.1 Убедитесь, что на расширитель ИСТОК-ТМр подано питающее напряжение и он подключен через конвертер USB RS485 к ПК.
- Г.1.2 Активируйте программу (экранный значок) «IstokOpcDa». В рабочем окне программы активируйте кнопку «Добавить» и в появившемся окне «IstokOpcDa: Добавить устройство» введите:

- имя прибора произвольное имя, набирается латинскими буквами, например «Istok tmr»:
- в строке «Тип» из выпадающего списка выберите «Istok-TMr»;
- в строке «Сетевой адрес» введите численное значение, соответствующее адресу, установленному переключателем S2 в ИСТОК-ТМр;
- активируйте надпись «Последовательный порт» установив, щелчком левой кнопки мыши, рядом с ней точку;
- в строке «Порт» из выпадающего списка выберите номер СОМ-порта, к которому, через конвертер USB RS485, подключен ИСТОК-ТМр. Для установки скорости обмена нажмите кнопку «...» и выберите значение, соответствующее скорости, установленной в ИСТОК-ТМр;
- в завершении проверьте правильность введенных данных и нажмите кнопку «Ok».
- Г.1.3 Убедитесь, что в рабочем окне программы «IstokOpcDa» появилась строка с именем и параметрами расширителя ИСТОК-ТМр, которые были введены в пункте Г.1.2.

Примечание – Для редактирования введенных параметров нажмите кнопку «Изменить».

- Г.1.4 Щелчком мыши выделите строку с именем «Istok_tmr». Нажмите кнопку «Тестирование» и, в случае успешной установки связи между расширителем ИСТОК-ТМр и ПК, наблюдайте в столбце «Состояние» появление сообщения «Подключен».
- Г.1.5 В завершении настройки нажмите кнопку «Зарегистрировать» для выполнения регистрации расширителя ИСТОК-ТМр в программе «IstokOpcDa».

Утверждены РУП «Витебский ЦСМС» 26 июня 2014 г.

Система обеспечения единства измерений Республики Беларусь

Преобразователи измерительные многофункциональные $\mbox{ } \mbox{ } \mbo$

Методика поверки MPБ МП.2418 - 2014

Содержание

1.	Операции и средства поверки
2.	Требования к квалификации поверителей
3.	Требования безопасности
4.	Условия поверки
5.	Подготовка к поверке
6.	Проведение поверки
7.	Оформление результатов поверки
Пр	иложение А. Настроечные данные для каналов измерения 1:
П	риложение Б. Рекомендуемая форма протокола поверки
При	ложение В. Насторйки ПО «IstokOpcDa» и «Kassl OPC Explorer»

					МРБ МП. 2418	- 2	20	14		
Изм	Лист	N докум.	Подп.	Дат.	w .		Лит	·.	Лист	Листов
Разр	аб.	Ананьев			Преобразователи измерительные многофункциональные				2	19
Провер. Т.контр.		ер. Сапего			многофункциональные ИСТОК – ТМ3 и ИСТОК – ТМР	Α				
					MCTOR - TWIS W MCTOR - TWIF					
Н.контр. Утв.		Хабаров			Мотолимо порории	37	1117	II	ПЦ Спецс	********
					Методика поверки	١	411	«П	пц спецс	истема»

Настоящая методика поверки распространяется на преобразователи измерительные многофункциональные (ПИМ) ИСТОК-ТМ3 (далее – вычислитель ИСТОК-ТМ3) и ПИМ ИСТОК-ТМР (далее – расширитель ИСТОК-ТМР), выпускаемые по ТУ РБ 300047573.003–2000 и устанавливает методику их первичной и периодической поверки.

Первичной поверке подвергают вычислители ИСТОК-ТМ3 и расширители ИСТОК-ТМР при выпуске из производства и после ремонта, влияющего на метрологические характеристики.

Примечание — Не влияющим на метрологические характеристики является ремонт, устраняющий неисправности клавиатуры и индикации, замена элемента питания CR 2032 в вычислителе ИСТОК-ТМ3, а также ремонт элементов в питающей и интерфейсной частях вычислителя ИСТОК-ТМ3 и расширителя ИСТОК-ТМР.

Периодической поверке подвергают вычислители ИСТОК-ТМ3 и расширители ИСТОК-ТМР, находящиеся в эксплуатации.

Межповерочный интервал вычислителя ИСТОК-ТМ3 и расширителя ИСТОК-ТМР - 4 года.

1 Операции и средства поверки

1.1 При проведении поверки должны быть выполнены операции, приведенные в таблице 1.1. Таблипа 1.1

Таолица 1.1	Номер пункта	Проведение	операции при
Наименование операции	методики поверки	первичной поверке	периодической поверке
Внешний осмотр	6.1	Да	Да
Опробование	6.2.1, 6.2.2	Да	Да
Идентификация программного обеспечения (ПО) вычислителя ИСТОК-ТМ3	6.2.3	Да	Да
Определение основной абсолютной погрешности измерения времени вычислителем ИСТОК-ТМ3	6.3.1	Да	Да
Определение основной приведенной погрешности измерения вычислителем ИСТОК-ТМ3 входных сигналов: - постоянного тока - омического сопротивления	6.3.2 6.3.4	Да	Да
Определение основной приведенной погрешности измерения расширителем ИСТОК-ТМР входных сигналов: - постоянного тока - омического сопротивления	6.3.3 6.3.5	Да	Да
Определение основной относительной погрешности измерения вычислителем ИСТОК-ТМз входных сигналов: - частоты - импульсов	6.3.6 6.3.8	Да	Да
Определение основной относительной погрешности измерения расширителем ИСТОК-ТМР входных сигналов: - частоты - импульсов	6.3.7 6.3.9	Да	Да

_						
Г						Лист
					МРБ МП. 2418 - 2014	2
Из	м Лист	№ докум.	Подпись	Дата		3

- 1.2 Если при выполнении хотя бы одной из операций поверки по 1.1 будет выявлено несоответствие установленным требованиям, вычислитель ИСТОК-ТМ3 или расширитель ИСТОК-ТМР признаётся непригодным к эксплуатации и подлежит передаче в ремонт предприятию-изготовителю или его сервисному центру.
- 1.3 Допускается проводить периодическую поверку только используемых в эксплуатации измерительных входов (ИВх) вычислителя ИСТОК-ТМз или расширителя ИСТОК-ТМР, с указанием в «Свидетельстве о поверке» номеров поверенных ИВх.
- 1.4 При проведении поверки должны применяться средства поверки и принадлежности, указанные в таблице 1.2. Средства измерений, на момент проведения поверки, должны иметь действующие свидетельства о поверке или оттиски поверительного клейма.

Таблица 1.2

Таолица 1.2		
Наименование средства поверки	Основные характеристики	Количество, шт.
Блок питания Б5-47	Диапазон установки выходных напряжений $(0,1-29,9)$ В и тока $(0,01-2,99)$ А. Погрешность $\pm (0,5\% \ U_{ycr}+0,1\% \ U_{maxc})$, В	1
Вольтметр универсальный В7-73	Диапазон измерений U от 0,01 мВ до 1000 В. Погрешность на пределе 2 В \pm (0,015 % от U + 50 мкВ)	1
Генератор Г5-60	Генерация импульсов прямоугольной формы положительной полярности. Период повторения импульсов T от 0,1 мкс до 10 с. Погрешность установки $\pm 1\cdot 10^{-6}$ T	1
Калибратор-вольтметр универсальный В1-28	Поддиапазон воспроизведения напряжения (0 - 10) В. Погрешность \pm (0,003 % U + 0,0003 % U _N)	1
Частотомер Ч3 – 63	Диапазон измеряемой частоты 0,1 Γ ц – 200 М Γ ц, относительная погрешность по частоте $\pm 5 \cdot 10^{-7}$	1
Катушка сопротивления образцовая Р331 100 Ом	Класс точности 0,01	1
Магазин сопротивлений Р4831	Класс точности $0.02/2 \cdot 10^{-6}$, диапазон от 0.1 до 1000 Ом	1
Конвертер RS485 – USB AMCK.468353.302	Подключение устройства с интерфейсом RS-485 к USB-порту ПК	1
Резистор С2-23 0,125 Вт	1 кОм, отклонение ± 10 %	1
Транзистор КТ315А	Тип n-p-n, Uкэ = 25 B, Iк = 100 мA, $h_{213} > 20$	1
Кнопка малогабаритная КМД1-1	Рабочее постоянное напряжение 30 В, сопротивление замкнутых контактов не более 0,05 Ом, износостойкость — 10 000 циклов	1

Примечание - Допускается применение других средств поверки, имеющих характеристики не хуже указанных в настоящей таблице.

- 2 Требования к квалификации поверителей
- 2.1 К проведению поверки вычислителя ИСТОК-ТМ3 или расширителя ИСТОК-ТМР допускаются лица, изучившие их эксплуатационную документацию и настоящую методику, имеющие опыт поверки средств данного назначения и аттестованные в установленном порядке в качестве поверителей.
 - 3 Требования безопасности
- 3.1 При проведении поверки должны быть соблюдены требования безопасности, установленные в ТКП 181 «Правила технической эксплуатации электроустановок потребителей» и

					МРБ МП. 2418 - 2014	Лист			
						4			
Изм	Лист	№ докум.	Подпись	Дата					

«Правилами техники безопасности при эксплуатации электроустановок потребителей», а также в эксплуатационной документации вычислителя ИСТОК-ТМ3 или расширителя ИСТОК-ТМР и применяемых средств поверки.

- 4 Условия поверки
- 4.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающего воздуха от 15 °С до 25 °С;
- относительная влажность окружающего воздуха от 60 % до 80 %;
- атмосферное давление от 630 до 795 мм рт. ст. (84-106,7) кПа;
- напряжение питания постоянного тока (24 ± 1) B; 0,5 A.

В помещении, где будет проводиться поверка, должны отсутствовать пыль, газы и пары, вызывающие коррозию и загрязняющие аппаратуру.

- 4.2 Не допускаются вибрация, удары, магнитные поля (кроме поля Земли) и другие воздействия, влияющие на работу вычислителя ИСТОК-ТМ3 или расширителя ИСТОК-ТМР и средств поверки.
 - 5 Подготовка к поверке
- 5.1 Устанавливают вычислитель ИСТОК-ТМ3 или расширитель ИСТОК-ТМР и средства поверки в помещении, где проводится поверка не позднее, чем за 2 ч до начала поверки.
- 5.2 До начала поверки вычислителя ИСТОК-ТМ3 должны быть выполнены следующие подготовительные работы:
- 5.2.1 Сохраняют (в случае необходимости) рабочие настройки вычислителя ИСТОК-ТМ3 в подменю «Сохр. конфигурацию» (главное меню «Сервис» > подменю «Сохр. конфигурацию»). По завершению поверки восстанавливают (проводят в режиме работы прибора «Конфигурирование») рабочие настройки вычислителя ИСТОК-ТМ3 в подменю «Загруз. конфигурацию» (главное меню «Сервис» > подменю «Загруз. конфигурацию»).
- 5.2.2 Активируют режим настройки вычислителя ИСТОК-ТМ3 «Конфигурирование» (кнопка *«РRG»*). Выполняют очистку прибора в подменю «Очист.каналы» (главное меню «Сервис» > подменю «Очист.каналы»). Не выходя из меню «Сервис» в подменю «Шаблоны.конф.» устанавливают шаблон «Поверка КИ». Проводят проверку настройки каналов измерения (КИ) вычислителя ИСТОК-ТМ3 согласно приложения А. Активируют режим работы вычислителя ИСТОК-ТМ3 «Измерение» кнопкой *«PRG»*. Подменю «Запуск на счет» в главном меню «Оперативные данные» не активируют.
- 5.2.3 В подменю «Подключение выхода» и устанавливают параметр «Вых.калибр.час.» (главное меню «Системные данные» > подменю «Настройка часов» > подменю «Подключение выхола»).
- 5.3 До начала поверки расширителя ИСТОК-ТМР должны быть выполнены следующие подготовительные работы:
- 5.3.1 Подключают расширитель ИСТОК-ТМР через конвертер USB-RS485 АМСК.468353.302 (или аналогичный, другого производителя) к персональному компьютеру (ПК) в соответствии с рисунком 6.1.
- 5.3.2 Включают ПК и, при необходимости, инсталлируют на ПК программу «IstokOpcDa» и копируют на диск С:\ программу «Kassl OPC Explorer», с помощью которых будет проводиться поверка расширителя ИСТОК-ТМР.

Примечание – Инсталляционные файлы программ «IstokOpcDa» и «Kassl OPC Explorer» находятся на CD-диске, входящем в комплект поставки расширителя ИСТОК-ТМР или могут быть получены по запросу у изготовителя расширителя ИСТОК-ТМР.

						Лист
					МРБ МП. 2418 - 2014	5
Изм	Лист	№ докум.	Подпись	Дата		

5.3.3 Выполняют, согласно приложению В, настройки в программах «IstokOpcDa» и «Kassl OPC Explorer» при подключении к ПК расширителя ИСТОК-ТМР.

Примечание — Значение десятичного номера сетевого адреса и скорости обмена данными в ИСТОК-ТМР задается переключателями S2 и S3 соответственно, согласно руководства по эксплуатации АМСК.426485.395 РЭ.

- 5.4 До начала поверки средства поверки должны быть подготовлены к работе согласно их эксплуатационной документации и выдержаны во включенном состоянии не менее времени установления рабочего режима.
- 5.5 Заполняют исходными данными бланк протокола поверки, в который будут заноситься результаты поверки вычислителя ИСТОК-ТМ3 или расширителя ИСТОК-ТМР.

Примечание — Сведения о конфигурации ИВх расширителя ИСТОК-ТМР приведены в его паспорте.

Рекомендуемая форма протокола поверки приведена в приложении Б.

- 6 Проведение поверки
- 6.1 Внешний осмотр
- 6.1.1 При проведении внешнего осмотра устанавливают соответствие вычислителя ИСТОК-ТМ3 или расширителя ИСТОК-ТМР следующим требованиям:
- соответствие заводского номера поверяемого прибора и номера, указанного в его паспорте (при первичной поверке);
- отсутствие механических повреждений корпуса, клеммных соединителей, а также жидкокристаллического индикатора (ЖКИ) и клавиатуры вычислителя ИСТОК-ТМ3;
- четкости маркировки на корпусе вычислителя ИСТОК-ТМ3 или расширителя ИСТОК-ТМР, их идентификационных табличек и клеммных соединителях.
- 6.1.2 Заключение о результатах внешнего осмотра заносят в протокол поверки. Результаты осмотра внешнего вида считают положительными, если они соответствуют вышеприведенным требованиям.
 - 6.2 Опробование и идентификация управляющей программы

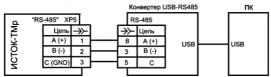


Рисунок 6.1 Схема подключения расширителя ИСТОК-ТМР к ПК

6.2.1 Подключают вычислитель ИСТОК-ТМ3 согласно эксплуатационной документации, к источнику напряжения постоянного тока 24 В. Включают источник и контролируют включение свечения индикатора «Сеть» на лицевой панели вычислителя ИСТОК-ТМ3.

По завершению внутреннего теста управляющая программа (*УП*) вычислителя ИСТОК-ТМ3 формирует звуковой сигнал и отображает на экране ЖКИ элементы рабочего меню. Время, с момента включения питания и до перехода в рабочий режим, должно быть не более 5 мин.

6.2.2 Собирают схему испытаний ИСТОК-ТМР в соответствии с рисунком 6.1. Включают питание расширителя ИСТОК-ТМР и ПК и контролируют включение свечения индикатора «Сеть» на лицевой панели расширителя ИСТОК-ТМР. Активируют на ПК ПО «IstokOpcDa» и производят программную регистрацию расширителя ИСТОК-ТМР (см. приложение В). Активируют на ПК ПО «Kassl OPC Explorer» и производят программное подключение расширителя ИСТОК-ТМР к ПО «Kassl OPC Explorer» (см. приложение В). Наблюдают, на экране ПК и по индикатору «RS-485» расширителя ИСТОК-ТМР, установление связи.

					МРБ МП. 2418 - 2014	Лист
Изм	Лист	№ докум.	Подпись	Дата		0

А1 – частотомер Ч3-63;

- 6.2.3 Проверку идентификационных данных метрологически значимой части *УП* вычислителя ИСТОК-ТМ3 выполняют следующим образом. В вычислителе ИСТОК-ТМ3 активируют подменю «Контрольная сумма» (главное меню «Диагностика» > подменю «Контрольная сумма»). Записывают установленное в вычислителе ИСТОК-ТМ3 значение контрольной суммы *УП*, которое отображается на экране ЖКИ в формате АААА/ВВВВ, где АААА контрольная сумма метрологически значимой части *УП*, ВВВВ контрольная сумма эксплуатационной части *УП*. Значение, отображаемой на экране ЖКИ контрольной суммы метрологически значимой части *УП*, должно совпадать со значением 23А4.
- 6.2.4 Заключение о результатах опробования заносят в протокол поверки. Результаты опробования и идентификации УП считают положительными, если они соответствуют вышеприведенным требованиям.
 - 6.3 Определение метрологических характеристик
- 6.3.1 Определение основной абсолютной погрешности измерения времени вычислителем ИСТОК-ТМ3.

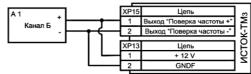
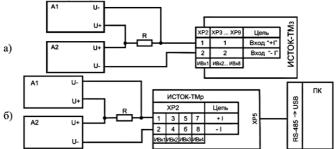


Рисунок 6.2 Схема проверки погрешности измерения времени

- 6.3.1.1 Собирают схему испытаний в соответствии с рисунком 6.2. Включают питание вычислителя и частотомера. В вычислителе ИСТОК-ТМ3 активируют подменю «Коррекция генератора» (главное меню «Системные данные» > подменю «Настройка часов» > подменю «Коррекция генератора»). Записывают установленное в вычислителе ИСТОК-ТМ3 значение периода следования импульсов *Ту*: XXXXXX.XXXX мкс.
- 6.3.1.2 Не выходя из подменю «Коррекция генератора», кнопкой «*PRG*» переводят вычислитель ИСТОК-ТМ3 в режим «Конфигурирование». Нажатием кнопки «*ENT*» активируют режим редактирования числового значения периода следования импульсов. Устанавливают номинальное значение: 001953,1250 мкс и нажимают кнопку «*ENT*». Кнопкой «*PRG*» переводят вычислитель ИСТОК-ТМ3 в режим «Измерение». Измеряют и записывают установившееся значение периода импульсов *Ti*.
- 6.3.1.3 Рассчитывают основную абсолютную погрешность измерения текущего времени Δt в секундах в пересчете за сутки (с/сут), по формуле:

$$\Delta t = \left(\frac{1}{T_y} - \frac{1}{T_i}\right) \cdot T_y \cdot 3600 \cdot 24 \tag{1}$$

где *Ti* – измеренный период следования импульсов, мкс;


Ту – установленный в вычислителе период следования импульсов, мкс.

3600 - количество секунд в часе, с/ч; 24 - количество часов в сутках, ч/сут;

- 6.3.1.4 Полученное значение абсолютной погрешности Δt заносят в протокол поверки. Результаты поверки считают положительными, если рассчитанное значение абсолютной погрешности вычислителя ИСТОК-ТМ3 не превышает значение \pm 2 с/сут.
- 6.3.1.5 По завершению проверки, по аналогии с п. 6.3.1.2, восстанавливают рабочее значение периода следования импульсов T_y .
- 6.3.2 Определение основной приведенной погрешности измерения КИ «01» «08» вычислителя ИСТОК-ТМ3 входных сигналов постоянного тока.

					МРБ МП. 2418 - 2014	Лист
Изм	Лист	№ докум.	Подпись	Дата		7

6.3.2.1 Собирают схему испытаний в соответствии с рисунком 6.3а. Включают питание вычислителя ИСТОК-ТМ3 и приборов схемы.

- А1 вольтметр универсальный В7-73; А2 калибратор вольтметр универсальный В1-28;
- R катушка сопротивления образцовая Р331 100 Ом, ПК персональный компьютер с внешним интерфейсным конвертером RS485 USB.

Рисунок 6.3 Схема проверки погрешности измерения КИ (ИВх) сигналов постоянного тока

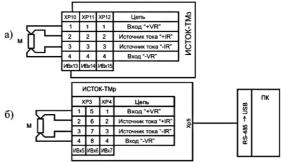
6.3.2.2 Определение основной приведенной погрешности измерения КИ «01» - «08» вычислителя ИСТОК-ТМ3 сигналов силы постоянного тока выполняют следующим образом. В вычислителе ИСТОК-ТМ3 активируют подменю «Мгновенное значение» в режиме измерения по КИ «01» (главное меню «Оперативные данные» > подменю «Каналы измерительные» > подменю «Канал измерительный 01» > «Мгновенное значение»). Изменяют выходное напряжение калибратора A2, устанавливая напряжение $0 \text{ B} \pm 30 \text{ мкB}$ на катушке R, что соответствует входному току силой 0 мA. Напряжение на катушке R измеряют вольтметром A1. Записывают в протокол поверки измеренное вычислителем ИСТОК-ТМ3 значение силы тока, которое отображается на экране ЖКИ в подменю «Мгновенное значение» в режиме измерения по КИ «01».

ВНИМАНИЕ! Здесь и далее при проведении поверки вычислителя ИСТОК-ТМ3 или расширителя ИСТОК-ТМР считывание показаний производить не менее чем через 20 с после изменения входных сигналов.

- 6.3.2.3 Повторяют 6.3.2.2, устанавливая калибратором A2 последовательно выходное напряжение на катушке R в соответствии с таблицей Б.1 приложение Б силы тока для КИ «01». Точность установки калибратором A2 выходного напряжения на катушке R должна быть не более ± 30 мкВ. Последовательно записывают в протокол поверки измеренное вычислителем ИСТОК-ТМ3 значение силы тока, которое отображается на экране ЖКИ в подменю «Мгновенное значение» в режиме измерения по КИ «01».
 - 6.3.2.4 Последовательно повторяют 6.3.2.1-6.3.2.3 для КИ «02» «08» вычислителя ИСТОК-ТМ3.
- 6.3.2.5 По результатам измерений для КИ «01» «08» вычислителя ИСТОК-ТМ3 рассчитывают основную приведенную погрешность измерения входных сигналов постоянного тока γ_k , %, по формуле:

$$\gamma_k = \frac{X_i - X_o}{X_n} \cdot 100\% \quad , \tag{2}$$

где X_i – измеренное значение величины сигнала;


 X_o – номинальное значение величины сигнала;

 X_n – нормирующее значение для измеряемого типа сигнала.

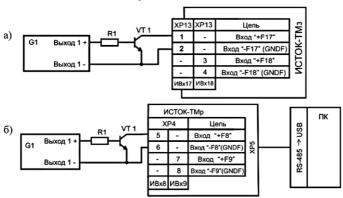
Номинальные значения X_o входных сигналов и нормирующие значения X_n приведены в таблице Б.1 приложение Б.

							Лист		
						МРБ МП. 2418 - 2014			
Г	Изм	Лист	№ докум.	Подпись	Дата		8		

- 6.3.2.6 Результаты поверки считают положительными, если полученные значения основной приведенной погрешности измерения КИ «01» «08» вычислителя ИСТОК-ТМ3 входных сигналов силы тока в диапазоне от 0 мА до 20 мА не превышают \pm 0,05 %.
- 6.3.3 Определение основной приведенной погрешности измерения ИВх «01» «04» расширителя ИСТОК-ТМР входных сигналов постоянного тока.
- 6.3.3.1 Собирают схему испытаний в соответствии с рисунком 6.36. Включают питание расширителя ИСТОК-ТМР и приборов схемы.
- 6.3.3.2 Определение основной приведенной погрешности измерения ИВх «01» «04» расширителя ИСТОК-ТМР сигналов силы постоянного тока выполняют следующим образом. Активируют на ПК ПО «IstokOpcDa» и «Kassl OPC Explorer» (см. 6.2.2) и производят программную регистрацию расширителя ИСТОК-ТМР. С момента отображения на экране ПК рядом с ИВх «01» «04» сообщения «good», расширитель ИСТОК-ТМР считают готовым к работе.
- 6.3.3.3 Изменяют выходное напряжение калибратора A2, устанавливая напряжение 0 B \pm 30 мкВ на катушке R, что соответствует входному току силой 0 мА. Напряжение на катушке R измеряют вольтметром A1. Записывают в протокол поверки измеренное ИВх «01» расширителя ИСТОК-ТМР значение силы тока, которое отображается на экране ПК.
- 6.3.3.4 Повторяют 6.3.3.3, устанавливая калибратором A2 последовательно выходное напряжение на катушке R в соответствии с таблицей Б.1 приложение Б силы тока для ИВх «01». Точность установки калибратором A2 выходного напряжения на катушке R должна быть не более ± 30 мкВ. Последовательно записывают в протокол поверки измеренное ИВх «01» расширителя ИСТОК-ТМР значение силы тока, которое отображается на экране ПК.
- 6.3.3.5 Последовательно повторяют 6.3.3.1 6.3.3.4 для ИВх «02» «04» расширителя ИСТОК-ТМР.
- 6.3.3.6 По результатам измерений для ИВх «01» «04» расширителя ИСТОК-ТМР рассчитывают основную приведенную погрешность измерения входных сигналов постоянного тока γ_k , %, по формуле (2).
- 6.3.3.7 Результаты поверки считают положительными, если полученные значения основной приведенной погрешности измерения ИВх «01» «04» расширителя ИСТОК-ТМР входных сигналов силы тока в диапазоне от 0 мА до 20 мА не превышают \pm 0,05 %
- 6.3.4 Определение основной приведенной погрешности измерения КИ «13» «15» вычислителя ИСТОК-ТМ3 входных сигналов омического сопротивления.

М-магазин сопротивлений Р4831;

ПК – персональный компьютер с внешним интерфейсным конвертером RS485 – USB.


Рисунок 6.4 Схема проверки погрешности измерения КИ и ИВх омического сопротивления

					МРБ МП. 2418 - 2014	Лист
Изм	Лист	№ докум.	Подпись	Дата		9

- 6.3.4.1 Собирают схему испытаний в соответствии с рисунком 6.4а. Включают питание вычислителя ИСТОК-ТМ3.
- 6.3.4.2 Определение основной приведенной погрешности измерения КИ «13» «15» вычислителя ИСТОК-ТМ3 сигналов омического сопротивления выполняют следующим образом. В вычислителе ИСТОК-ТМ3 активируют подменю «Мгновенное значение» в режиме измерения по КИ «13» (главное меню «Оперативные данные» > подменю «Каналы измерительные» > подменю «Канал измерительный 13» > Мгновенное значение»). Устанавливают на магазине сопротивлений М начальное значение сопротивления в соответствии с таблицей Б.1 приложение Б для КИ «13». Записывают в протокол поверки измеренное вычислителем ИСТОК-ТМ3 значение омического сопротивления, которое отображается на экране ЖКИ в подменю «Мгновенное значение» в режиме измерения по КИ «13».
- 6.3.4.3 Повторяют 6.3.4.2, последовательно устанавливая на магазине сопротивлений М значение сопротивления в соответствии с таблицей Б.1 приложение Б для КИ «13». Записывают в протокол поверки измеренное вычислителем ИСТОК-ТМ3 значение омического сопротивления, которое отображается на экране ЖКИ в подменю «Мгновенное значение» в режиме измерения по КИ «13».
- 6.3.4.4 Последовательно повторяют 6.3.4.1 6.3.4.3 для КИ «14» и КИ «15» вычислителя ИСТОК-ТМ3.
- 6.3.4.5 По результатам измерений для КИ «13» «15» вычислителя ИСТОК-ТМ3 рассчитывают основную приведенную погрешность измерения входных сигналов омического сопротивления γ_k , %, по формуле (2).
- 6.3.4.6 Результаты поверки считают положительными, если полученные значения основной приведенной погрешности измерения КИ «13» «15» вычислителя ИСТОК-ТМ3 входных сигналов омического сопротивления не превышают \pm 0,05 %.
- 6.3.5 Определение основной приведенной погрешности измерения ИВх «05» «07» расширителя ИСТОК-ТМР входных сигналов омического сопротивления.
- 6.3.5.1 Собирают схему испытаний в соответствии с рисунком 6.46. Включают питание расширителя ИСТОК-ТМР.
- 6.3.5.2 Определение основной приведенной погрешности измерения ИВх «05» «07» расширителя ИСТОК-ТМР сигналов омического сопротивления выполняют следующим образом. Активируют на ПК ПО «IstokOpcDa» и «Kassl OPC Explorer» (см. 6.2.2) и производят программную регистрацию расширителя ИСТОК-ТМР. С момента отображения на экране ПК рядом с ИВх «05» «07» сообщения «good», расширитель ИСТОК-ТМР считают готовым к работе.
- 6.3.5.3 Устанавливают на магазине сопротивлений М начальное значение сопротивления в соответствии с таблицей Б.1 приложение Б для ИВх «05». Записывают в протокол поверки измеренное ИВх «05» расширителя ИСТОК-ТМР значение омического сопротивления, которое отображается на экране ПК.
- 6.3.5.4 Повторяют 6.3.5.3, последовательно устанавливая на магазине сопротивлений М значение омического сопротивления в соответствии с таблицей Б.1 приложение Б для ИВх «05». Записывают в протокол поверки измеренное ИВх «05» расширителя ИСТОК-ТМР значение омического сопротивления.
- 6.3.5.5 Последовательно повторяют 6.3.5.1 6.3.5.4 для ИВх «06» и ИВх «07» расширителя ИСТОК-ТМР.
- 6.3.5.6 По результатам измерений для ИВх «05» «07» расширителя ИСТОК-ТМР рассчитывают основную приведенную погрешность измерения входных сигналов омического сопротивления γ_k , %, по формуле (2).

_							
I							Лист
						МРБ МП. 2418 - 2014	10
ſ	Изм	Лист	№ докум.	Подпись	Дата		10

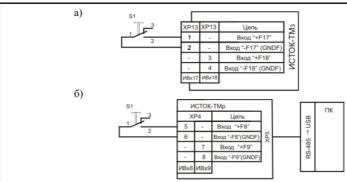
- 6.3.5.7 Результаты поверки считают положительными, если полученные значения основной приведенной погрешности измерения ИВх «05» «07» расширителя ИСТОК-ТМР входных сигналов омического сопротивления не превышают \pm 0,05 %.
- 6.3.6 Определение основной относительной погрешности измерения КИ «17» и КИ «18» вычислителя ИСТОК-ТМ3 входных сигналов частоты.
- 6.3.6.1 Собирают схему испытаний в соответствии с рисунком 6.5а. Включают питание вычислителя ИСТОК-ТМ3 и приборов поверки.
- 6.3.6.2 Определение основной относительной погрешности измерения КИ «17» и «18» вычислителем ИСТОК-ТМ3 входных сигналов частоты выполняют следующим образом. В вычислителе ИСТОК-ТМ3 активируют подменю «Мгновенное значение» в режиме измерения по КИ «17» (главное меню «Оперативные данные» > подменю «Каналы измерительные» > подменю «Канал измерительные» > подменю «Канал измерительный 17» > «Мгновенное значение»). Устанавливают на генераторе выходной сигнал амплитудой 5 В, длительностью положительного импульса 250 мкс и с начальным значением частоты согласно таблице Б.2 приложение Б. Записывают в протокол поверки измеренное вычислителем ИСТОК-ТМ3 значение частоты, которое отображается на экране ЖКИ в подменю «Мгновенное значение» в режиме измерения по КИ «17».
- 6.3.6.3 Повторяют 6.3.6.2, последовательно устанавливая значение частоты на генераторе в соответствии с таблицей Б.2 приложение Б для КИ «17». Записывают в протокол поверки измеренное вычислителем ИСТОК-ТМ3 значение частоты, которое отображается на экране ЖКИ в подменю «Мгновенное значение» в режиме измерения по КИ «17».
 - 6.3.6.4 Последовательно повторяют 6.3.6.1 6.3.6.3 для КИ «18» вычислителя ИСТОК-ТМз.

- G1 генератор Γ 5-60, R1 резистор 0,125 Вт 1 кОм \pm 10%; VT1 транзистор КТ315A,
- ΠK персональный компьютер с внешним интерфейсным конвертером RS485 USB.

Рисунок 6.5 Схема проверки погрешности измерения КИ и ИВх сигналов частоты

6.3.6.5 По результатам измерений для КИ «17» и КИ «18» вычислителя ИСТОК-ТМ3 рассчитывают основную относительную погрешность измерения входных сигналов частоты δ_k , %, по формуле:

$$\delta_k = \frac{X_i - X_o}{X_o} \cdot 100 \%$$
, (3)


где: X_i — измеренное значение величины сигнала;

 X_0 – номинальное значение величины сигнала. Номинальное значение X_o соответствующих входных сигналов приведено в таблице Б.2 приложение Б.

					МРБ МП. 2418 - 2014	Лист
						٠,,
Изм	Лист	№ докум.	Подпись	Дата		11

- 6.3.6.6 Результаты поверки считают положительными, если полученные значения основной относительной погрешности измерения по КИ «17» и КИ «18 вычислителя ИСТОК-ТМ3 входных сигналов частоты не превышают \pm 0,05 %.
- 6.3.7 Определение основной относительной погрешности измерения ИВх «08» и ИВх «09» расширителя ИСТОК-ТМР входных сигналов частоты.
- 6.3.7.1 Собирают схему испытаний в соответствии с рисунком 6.56. В расширителе ИСТОК-ТМР устанавливают переключающие рычажки S2.5-S2.6 на переключателе S2 в положение «ОFF» (нижнее положение). Включают питание расширителя ИСТОК-ТМР и приборов поверки.
- 6.3.7.2 Определение основной приведенной погрешности измерения ИВх «08» и ИВх «09» расширителя ИСТОК-ТМР сигналов частоты выполняют следующим образом. Активируют на ПК ПО «IstokOpcDa» и «Kassl OPC Explorer» (см. 6.2.2) и производят программную регистрацию расширителя ИСТОК-ТМР. С момента отображения на экране ПК рядом с ИВх «08», ИВх «09» сообщения «good», расширитель ИСТОК-ТМР считают готовым к работе
- 6.3.7.3 Устанавливают на генераторе выходной сигнал амплитудой 5 В, длительностью положительного импульса 250 мкс и с начальным значением частоты согласно таблице Б.2 приложение Б. Записывают в протокол поверки измеренное расширителем ИСТОК-ТМР значение частоты, которое отображается на экране ПК.
- 6.3.7.4 Повторяют 6.3.7.3, последовательно устанавливая значение частоты на генераторе в соответствии с таблицей Б.2 приложение Б для ИВх «08» расширителя ИСТОК-ТМР. Записывают в протокол поверки измеренное ИВх «08» расширителя ИСТОК-ТМР значение частоты, которое отображается на экране ПК.
 - 6.3.7.5 Последовательно повторяют 6.3.7.1 6.3.7.4 для ИВх «09» расширителя ИСТОК-ТМР.
- 6.3.7.6 По результатам измерений для ИВх «08» и ИВх «09» расширителя ИСТОК-ТМР рассчитывают основную относительную погрешность измерения входных сигналов частоты δ_k , %, по формуле (3).
- 6.3.7.7 Результаты поверки считают положительными, если полученные значения относительной погрешности измерения ИВх «08» и ИВх «09» расширителя ИСТОК-ТМР входных сигналов частоты не превышают \pm 0.05 %.
- 6.3.8 Определение основной относительной погрешности измерения КИ «17» и КИ «18» вычислителя ИСТОК-ТМ3 входных число-импульсных сигналов.
- 6.3.8.1 Собирают схему испытаний в соответствии с рисунком 6.6а. Включают питание вычислителя ИСТОК-ТМ3 и приборов поверки.
- 6.3.8.2 Определение основной относительной погрешности измерения КИ «17» и «18» вычислителя ИСТОК-ТМ3 входных число-импульсных сигналов выполняют следующим образом. В вычислителе ИСТОК-ТМ3 активируют подменю «Тип канала измерения» (главное меню «Оперативные данные» > подменю «Каналы измерительные» > подменю «Канал измерения»). Не выходя из подменю «Тип канала измерения» (КИ «17»), кнопкой «PRG» переводят вычислитель ИСТОК-ТМ3 в режим «Конфигурирование». Нажатием кнопки «ENT» активируют режим редактирования и устанавливают тип КИ «Импульсный» и, подтверждая выбор типа, нажимают кнопку «ENT». Кнопкой «PRG» переводят вычислитель ИСТОК-ТМ3 в режим «Измерение». В вычислителе ИСТОК-ТМ3 активируют подменю «Мгновенное значение» в режиме измерения по КИ «17» (главное меню «Оперативные данные» > подменю «Каналы измерительные значение»).

						Лист
					МРБ МП. 2418 - 2014	10
Изм	Лист	№ докум.	Подпись	Дата		12

S1 - кнопка малогабаритная КМД1-1,

ПК – персональный компьютер с внешним интерфейсным конвертером RS485 - USB.

Рисунок 6.6 Схема проверки погрешности измерения КИ и ИВх число-импульсных сигналов

- 6.3.8.3 Нажимают десять раз подряд на кнопку S1, задавая количество импульсов в соответствии с таблицей Б.2 приложение Б. Нажатия должны производиться до четкого щелчка кнопки с частотой, достаточной для устного счета. Записывают в протокол поверки измеренное вычислителем ИСТОК-ТМз значение импульсов, которое отображается на экране ЖКИ в подменю «Мгновенное значение» в режиме измерения по КИ «17».
- 6.3.8.4 Повторяют 6.3.8.3 для КИ «17» вычислителя ИСТОК-ТМ3, последовательно нажимая на кнопку S1 и считая количество нажатий, доводят общее количество импульсов, в соответствии с таблицей Б.2 приложение Б, до пятидесяти. Записывают в протокол поверки измеренное вычислителем ИСТОК-ТМ3 значение количества импульсов, которое отображается на экране ЖКИ в подменю «Мгновенное значение» в режиме измерения по КИ «17».
 - 6.3.8.5 Последовательно повторяют 6.3.8.1 6.3.8.4 для КИ «18» вычислителя ИСТОК-ТМз.
- 6.3.8.6 По результатам измерений для КИ «17» и КИ «18» вычислителя ИСТОК-ТМ3 рассчитывают основную относительную погрешность измерения входных число-импульсных сигналов δ_k , %, по формуле (3).
- 6.3.8.7 Результаты поверки считают положительными, если полученные значения основной относительной погрешности измерения по КИ «17» и КИ «18 вычислителя ИСТОК-ТМз входных число-импульсных сигналов не превышают \pm 0,04 %.
- 6.3.9 Определение основной относительной погрешности измерения ИВх «08» и ИВх «09» расширителя ИСТОК-ТМР входных число-импульсных сигналов.
- 6.3.9.1 Собирают схему испытаний в соответствии с рисунком 6.66. В расширителе ИСТОК-ТМР устанавливают переключающие рычажки S2.5-S2.6 на переключателе S2 в положение «ON». Включают питание расширителя ИСТОК-ТМР и приборов схемы поверки.
- 6.3.9.2 Определение основной приведенной погрешности измерения ИВх «08» и ИВх «09» расширителя ИСТОК-ТМР входных число-импульсных сигналов выполняют следующим образом. Активируют на ПК ПО «IstokOpcDa» и «Kassl OPC Explorer» (см. 6.2.2) и производят программную регистрацию расширителя ИСТОК-ТМР. С момента отображения на экране ПК рядом с ИВх «08», ИВх «09» сообщения «good», расширитель ИСТОК-ТМР считают готовым к работе.
- 6.3.9.3 Нажимают десять раз подряд на кнопку S1, задавая количество импульсов в соответствии с таблицей Б.2 приложение Б. Нажатия должны производиться до четкого щелчка кнопки с частотой, достаточной для устного счета. Записывают в протокол поверки измеренное ИВх «08» расширителя ИСТОК-ТМР значение количества импульсов, которое отображается на экране ПК.

					МРБ МП. 2418 - 2014	Лист
						12
Изм	Лист	№ докум.	Подпись	Дата		13

- 6.3.9.4 Повторяют 6.3.9.3 для ИВх «08» расширителя ИСТОК-ТМР, последовательно нажимая на кнопку S1 и считая количество нажатий, доводят общее количество импульсов, в соответствии с таблицей Б.2 приложение Б, до пятидесяти. Записывают в протокол поверки измеренное ИВх «08» расширителя ИСТОК-ТМР значение количества импульсов, которое отображается на экране ПК.
 - 6.3.9.5 Последовательно повторяют 6.3.9.1 6.3.9.4 для ИВх «09» расширителя ИСТОК-ТМР.
- 6.3.9.6 По результатам измерений для ИВх «08» и ИВх «09» расширителя ИСТОК-ТМР рассчитывают основную относительную погрешность измерения входных число-импульсных сигналов δ_k , %, по формуле (3).
- 6.3.9.7 Результаты поверки считают положительными, если полученные значения относительной погрешности измерения по ИВх «08» и ИВх «09» расширителя ИСТОК-ТМР входных число-импульсных сигналов не превышают \pm 0,04 %.
 - 7 Оформление результатов поверки
- 7.1 Результаты поверки вычислителя ИСТОК-ТМз или расширителя ИСТОК-ТМР должны быть оформлены протоколом поверки, который заполняется и подписывается поверителем.
- 7.2 При положительных результатах первичной поверки в паспорте вычислителя ИСТОК-ТМ3 или расширителя ИСТОК-ТМР производится запись о годности к применению с указанием даты поверки, которая заверяется подписью лица, выполнившего поверку и оттиском поверительного клейма. В вычислителе ИСТОК-ТМ3 поверителем пломбируется внутренняя защитная пластина в верхней крышке корпуса и нижняя плата с клеммными соединителями. В расширителе ИСТОК-ТМР пломбируется верхняя крышка корпуса.

При положительных результатах периодической поверки производится запись о годности к применению в паспорте изделия или выписывается Свидетельство о поверке.

7.3 При отрицательных результатах поверки вычислитель ИСТОК-ТМ3 или расширитель ИСТОК-ТМР признается непригодным к применению. Организации-владельцу вычислителя ИСТОК-ТМ3 или расширителя ИСТОК-ТМР выдается Заключение о непригодности к эксплуатации с указанием причин несоответствия, поверительное клеймо гасится.

\vdash						Лист
					МРБ МП. 2418 - 2014	1.4
Изм	Лист	№ докум.	Подпись	Дата		14

Приложение А

(обязательное)

Настроечные данные для каналов измерения вычислителя ИСТОК-ТМ3

В таблице А.1 приведены настроечные данные для каналов измерения (КИ) вычислителя ИСТОК-ТМз, необходимые для определения абсолютной приведенной (или относительной) погрешности измерения входных сигналов.

Таблица А.1

Номер КИ	Обозначение типа и диапазон входного сигнала	Номер ИВх вычислителя	Поз. номер клеммного соединителя
01	Сила тока (0-20) мА	01	XP 2
02	Сила тока (0-20) мА	02	XP 3
03	Сила тока (0-20) мА	03	XP 4
04	Сила тока (0-20) мА	04	XP 5
05	Сила тока (0-20) мА	05	XP 6
06	Сила тока (0-20) мА	06	XP 7
07	Сила тока (0-20) мА	07	XP 8
08	Сила тока (0-20) мА	08	XP 9
09	Не используется	-	-
10	Не используется	-	-
11	Не используется	-	-
12	Не используется	-	-
13	Сопротивление (10-300) Ом	13	XP 10
14	Сопротивление (10-300) Ом	14	XP 11
15	Сопротивление (10-300) Ом	15	XP 12
16	Не используется	-	-
17	Частотный / Импульсный*	17	ХР 13, конт. 1 и 2
18	Частотный / Импульсный*	18	ХР 13, конт. 3 и 4

^{*) -} Испытания проводят сначала для «частотного» типа входного сигнала затем, после перепрограммирования — для «импульсного». Для этого в параметрах КИ в пункте «Тип измерительного канала» выбирают значение «импульсный».

Примечание — Назначение и нумерация контактов клеммных соединителей приведены на расположенных рядом с ними маркировочных табличках

						Лист
					МРБ МП. 2418 - 2014	1.5
Изм	Лист	№ докум.	Подпись	Дата		15

Приложение Б

(рекомендуемое)

		(рекомендуемо			
1	преобразователя измерител	Протокол пове ьного многофун		ИСТОК – ТМ_	_
Заводской не	омер изделия		Дата выпу	уска	
Условия про	ведения поверки:				
	P	езультаты повер	оки		
1 Внешний	осмотр				
2 Опробован	ние				
3 Основная	абсолютная погрешность из	вмерения текущ	его времени ИС	СТОК-ТМз Δt: _	с/сут
•	ы определения основной п ому току и омическому соп				х сигналов
Таблица І	5.1				
Номер КИ (ИВх) ИСТОК-	Входной сигнал	Измеряемый	Измеренное	Приведенная погрешность	Норми-

Номер КИ (ИВх) ИСТОК-		Входной	сигнал	Измеряемый	Измеренное	Приведенная погрешность	Норми-	
TM3	значение		Единица измерения	параметр	значение	измерения, %	значение	
1	2	3	4	5	6	7	8	
		0					20 мА	
01	01	4	мА	Сила тока				
01		10	MA	Сила тока				
		20						
		0						
02	02	4	мА	Сила тока			20 мА	
02	02	10	MA				20 M/ L	
		20						
		0						
03	03	4	мА	Сила тока			20 мА	
03	03	10	WIA	Сила тока			20 MA	
		20						
		0						
04	04	4	мА	Сила тока			20 мА	
04	04	10	WLA	Chha Toka				
		20						

					МРБ МП. 2418 - 2014	16		
Изм	Лист	№ докум.	Подпись	Дата		16		

Продолжение таблицы Б.1									
Номер КИ (ИВх) ИСТОК-		Входной сигнал		Измеряемый	Измеренное	Приведенная погрешность	Норми-		
TM3	ГМ3 ТМР Номинал значен		Единица измерения	параметр	значение	измерения, %	значение		
	_	0		Сила тока					
0.5		4					20 4		
05		10	мА				20 мА		
		20							
		0		Сила тока					
06		4	мА				20 мА		
00	_	10	MA				20 MA		
		20							
		0	мА						
07	_	4		Сила тока		2	20 mA		
07		10		Сила тока			20 MA		
		20							
	_	0	мА	Сила тока					
08		4					20 мА		
08		10					20 MA		
		20							
	05	10	Ом	Сопротив- ление					
13		50					290 Ом		
13		100					290 OM		
		300							
14	06	10	Ом						
		50		Сопротив-	Сопротив-		290 Ом		
		100		ление					
		300							
15	07	10		Сопротив-					
		50	Ом				200.0		
		100		Ом	ление			290 Ом	
		300							

| 300 | Примечание — Пределы допускаемой основной приведенной погрешности измерения постоянного тока и омического сопротивления $\pm 0,05~\%$

					МРБ МП. 2418 - 2014			
Изм	Лист	№ докум.	Подпись	Дата				

c		-	~		й относительного относительного приведены в та	ой погрешности измерения в блице Б.2.	ходных ча-			
	Таб	лица Б	12							
Г	Ном	иер								
КИ (ИВх) ИСТОК-		,	Входной	сигнал	Измеряемый	Измеренное	Относительная погрешность			
7	ГМ3	ТМР	Номинальное значение	Единица измерения	параметр	значение	перения, %			
\vdash		08	60	измерения	Частота					
			200	1 .						
	17		1000	Гц						
			3000	1						
			60							
	18	09	200	Гц	Частота					
	10	U9	1000	1 11	-acioia					
			3000	1						
Примечание — Пределы допускаемой основной относительной погрешности измерения частотных сигналов $\pm 0.05 \%$										
Г			10		Количество					
17	1/	08	50	Импульс	импульсов					
	10	09	10		Количество					
	18	09	50	Импульс	импульсов					
Примечание — Пределы допускаемой основной относительной погрешности измерения число-импульсных сигналов $\pm 0,04\%$										
	Заключение по результатам поверки									
	Преобразователь измерительный многофункциональный ИСТОК-ТМ по результатам проведенной поверки									
	Дата поверки 20 г. Поверитель									
	Подпись Расшифровка подписи Место клейма									
							Лист			
21/	Лист	No 74	окум. Подпись	Дата	MP	МРБ МП. 2418 - 2014				
-9.46	-11161	71. Д	подписв	~						

Приложение В (справочное)

1. Настройки в программе «IstokOpcDa» для подключения ПИМ ИСТОК-ТМР

- 1.1 Активируем программу (экранный значок) «IstokOpcDa». В окне IstokOpcDa активируем кнопку «Добавить» и в появившемся окне «IstokOpcDa: Добавить устройство» ввести:
- произвольное имя (английский алфавит, для удобства идентификации прибора на экране монитора), например «Istok_TMr»;
- в строке «Последовательный порт» из выпадающего списка выбрать номер СОМ-порта, к которому, через конвертер USB-RS485, подключен расширитель ИСТОК-ТМР. Для установки скорости обмена нажать кнопку «...» и выбрать значение, соответствующее скорости, установленной переключателем S3 в клеммном отсеке расширителя ИСТОК-ТМР;
- в строке «Сетевой адрес» ввести численное значение, соответствующее адресу, установленному переключателем S2 в клеммном отсеке расширителя ИСТОК-ТМР;
 - в строке «Тип» из выпадающего списка выбрать «IstokTMr»;
 - в завершении проверить правильность введенных данных и нажать кнопку «Ок».
- 1.2 Убедиться, что в рабочем окне программы «IstokOpcDa» появилась строка с именем и параметрами расширителя ИСТОК-ТМР, которые были введены в п. 1.1.

Примечание – Для редактирования введенных параметров нажать кнопку «Изменить».

- 1.3 Щелчком мыши выделить строку с именем поверяемого прибора. Нажать кнопку «Тестирование» и, в случае успешной установки связи между расширителем ИСТОК-ТМР и ПК, наблюдать в строке «Состояние» появление сообщения «Подключен».
- 1.4 Активировать кнопку «Зарегистрировать» для выполнения регистрации расширителя ИСТОК-ТМР в программе «IstokOpcDa».

2. Настройки в программе «Kassl OPC Explorer» для подключения ПИМ ИСТОК-ТМР

После запуска программы «Kassl OPC Explorer» для наблюдения на экране монитора за результатами измерения расширителя ИСТОК-ТМР входных сигналов необходимо:

- 2.1 В левой части рабочего окна «dOPC Explorer» нажать на значок «>» рядом со строкой «IstokOPCDA 3.0 Server». Далее нажать на значок «>» рядом с папкой «Server items».
- 2.2 Щелкнуть мышью по папке «Istok_TMr» (имя прибора, которое было набрано в программе «IstokOpcDa»). В правом рабочем окне появляется список измерительных каналов расширителя ИСТОК-ТМр.
 - 2.3 Скопировать список измерительных каналов в папку «Default». Для этого необходимо:
- щелкнуть мышью на первую строку в списке (I1) и, нажав и удерживая клавишу «↑» на клавиатуре ПК, щелкнуть мышью на последней строке списка (Imp2);
- установить курсор на выделенном списке и нажать правую кнопку мыши. В появившемся меню нажать на «Сору»;
- установить курсор на папку «Default» и нажать правую кнопку мыши. В появившемся меню активировать кнопку «Paste». В правом рабочем окне появляется список измерительных каналов расширителя ИСТОК-ТМР.
- 2.4 Удерживая курсор на папке «Default», нажать правую кнопку мыши. В появившемся меню активировать кнопку «Active». Напротив каждого измерительного канала (расширителя ИСТОК-ТМР) должны появиться надписи «good», а в столбце «Value» результаты измерений, по измерительным каналам расширителя ИСТОК-ТМР.

Примечание — Время обновления результатов измерения на экране монитора можно изменить, установив курсор на папку «Default» и нажав правую кнопку мыши. В появившемся меню активировать кнопку «Properties».В строке «Update rate» ввести удобное время обновления, в мс.

						Лист				
					МРБ МП. 2418 - 2014	19				
Изм	Лист	№ докум.	Подпись	Дата						